
 REST ASSURED NOTES – BASICS

Introduction to REST API:

What is REST API? REST, which stands for Representational State Transfer, is an
architectural style for designing networked applications. A REST API (Application
Programming Interface) is a set of rules and conventions for building and interacting with
web services that adhere to the principles of REST. It allows systems to communicate over
HTTP by defining a set of constraints on how resources are addressed and transferred.

Key Principles of REST:

1. Statelessness: Each request from a client to a server must contain all the information
needed to understand and fulfill the request. The server should not store any
information about the client's state between requests.

2. Resource-Based: Resources (such as data or services) are identified by URLs, and
they can be manipulated using standard HTTP methods (GET, POST, PUT, DELETE).

3. Representation: Resources can have multiple representations, such as JSON or XML.
Clients can request a specific representation when interacting with a resource.

4. Uniform Interface: A uniform and consistent interface simplifies and decouples the
architecture, making it more scalable and maintainable.

Technical Details:
HTTP Methods:

 GET: Retrieve a representation of a resource.
 POST: Create a new resource.
 PUT: Update an existing resource or create a new resource if it doesn't exist.
 DELETE: Remove a resource.
 PATCH: Partially update a resource.

Status Codes:
 2xx: Success
 3xx: Redirection
 4xx: Client Error
 5xx: Server Error

Content Types:
 Common content types include JSON and XML.

Usage:
REST APIs are widely used in various applications, including:

 Web and mobile applications
 IoT (Internet of Things) devices
 Cloud services
 Microservices architectures

Implementation:
REST APIs are extensively implemented globally, powering a significant portion of the
modern web and mobile applications. Major tech companies, social media platforms, e-
commerce sites, and cloud service providers expose REST APIs for developers to integrate
with their services.

Importance:

1. Simplicity: REST APIs are straightforward and easy to understand, making them
accessible to a wide range of developers.

2. Scalability: The stateless nature of REST allows for easy scalability, as each request
contains all the information needed.

3. Flexibility: Clients can request and receive only the data they need, and the server
can provide various representations of the same resource.

4. Interoperability: REST APIs are platform-independent and can be used with any
programming language or framework that supports HTTP.

Practical Examples:

1. GitHub API:
 Allows developers to access and manage GitHub repositories, issues, and user

data.
2. Twitter API:

 Provides functionality to interact with Twitter data, including tweets, user
profiles, and trends.

3. Google Maps API:
 Enables developers to integrate Google Maps into their applications,

accessing features like geolocation, directions, and places.
4. OpenWeatherMap API:

 Allows developers to retrieve weather data for a specific location.
5. Stripe API:

 Facilitates online payment processing, allowing developers to integrate
payment functionality into their applications.

Understanding REST API concepts and their practical implementations is crucial for modern
web development, enabling seamless integration and communication between different
services and platforms.

REST API (Representational State Server) :

REST 6 Constraints:

 Client Server,

 Stateless,

 Cache,

 Uniform Interface,

 Layered System,

 Code on Demand.

JSON (Javascript Object Notation). It is lightweight, human readable, easy , key-value pairs.

{
 "Name": "Test",
 "Mobile": 12345678,
 "Boolean": true,
 "Pets": [
 "Dog",
 "cat"
],
 "Address": {
 "Permanent address": "USA",
 "current Address": "AU"
 }
}

API Request Format:

JSON Path:
Groovy GPath , Jayway JsonPath

JSON Path Finder

x.Pets[0]
x.Address["Permanent address"]

https://jsonpathfinder.com/

REST ASSURED: GETTING STARTED:

Static Imports -> Readability, Reduced Lines:
 With the help of Java static import, we can access the static members of a class directly
without class name or any object

Request and Response Specification with Post Request :
Sample Post Spec:

Sample Test in BDD (Given,When,Then) :

Sample Test in non BDD : From Request Specification pre-configured.

Sample Test by passing request body from file. We can also pass values as Collection
object such as Map.

Rest Assured Enable Logging:

Rest Assured Can Assert Response Headers:

Multiple Response Headers Assertion:

Extract All and Print Response Headers:
Also, We can do the multi value headers too.

Request Specification in Rest Assured:

These can be provided in upfront in before class and assign to static variable of
RequestSpecification from Rest Assured.

Later, all the requests can be triggered without providing base urls, headers and other
repetitive values.

If we want to know what are the request specifications configured in before test, then we
have a way to query it in rest assured from class “QueryableRequestSpecification”

Rest-Assured : Response Specification:

Add common response specification in before class and use them in test as
“then().spec(responseSpecObject)”

Encoding and Decoding:

By default encoding added in rest assured is UTF-8. This may cause request failures if they
are not configured properly.

https://github.com/rest-assured/rest-assured/wiki/Usage#encoder-config

RestAssured.config =
RestAssured.config(config().encoderConfig(encoderConfig().defaultCharsetForContentType("
UTF-16", "application/xml")));

Query Parameter:

We can use query parameters to control what data is returned in endpoint resources. It
appears at the end of the URL after the question mark (?) and helps us to control the set of
items and properties in responses, and the order of the items returned.
Consider the following GitHub API URL:
https://api.github.com/user/repos?sort=created&direction=desc
This will list all repositories for an authenticated user but the response properties will be
sorted by repository created and in descending order.

Path Parameter:

Path parameters are variables in a URL path. They are used to point to a specific resource
within a collection. We can define multiple PATH parameters and each of them is
represented by a curly brace {}.
Consider the following GitHub API url:
https://api.github.com/users/:username/repos
This will list all public repositories for the specified user with the value username.
:username is the Path parameter in the above url.

Form Data:

Form-data is one of the formats for data sent from a web form. Specifically, it encodes
values entered into a form as name-value pairs and sends them with the Content-Type
header set to multipart/form-data. The main features of form-data include:

 Ability to send not only text but also files.

 Ability to split and send the transmitted data into parts.

 Ability to specify the content type for each part.

Upload File using Multi-Part Form Data:

Download File using get request :

receive response as byte array or Input stream:

URL Encoded Form:

form data key value pairs provided in request with encoding as mentioned

below

Percent Encoded Non-Alphanumeric :

Validating JSON Schema from Rest Assured: External Library

Generally used to validate the json response data format and the mandatory fields, field type
etc.

Log Rest Assured Req/Res details to the Log File:

 Useful in CI CD via PrintStream class. Also it has option to print what is necessary
with Pretty print and other options.

Provide Logging in Req/Res Specification builder class so it can be used again in another
tests.

given should contain request Specification object and then spec should contain response
specification

Serialization and De-Serialization in Java:

Rest Assured: Object mapping of JSON/XML files into Java object either POJO/relevant
class/collections and vice versa.

Serialize Map to JSON Object using Jackson-databind Maven Dependency:
Method used to serialize java object to JSON here is writeValueAsString(javaObjects)

We can also create JSON file via Object-Mapper.

Simple POJO Object to JSON in Rest Assured (Serialization) :

Sample simple JSON here used is:

{
“key1”:”value1”,
“key2”:”value2”
}

Passing POJO object directly in Rest Assured body method which will do serialization
internally using Jackson or Gson libraries and feed as in application/json format for the
request. Also, make note to support this it is needed to include default public constructor in
the POJO though we are going to use only parameterized constructor to initialize the values
or going to use the setter methods.

Deserialization of simple POJO:

Below example will receive the response in POJO format and it has to be provided in then()
condition with the method as where pojo class structure is passed.

ObjectMapper is an important class in Jackson which here used to convert the POJO objects
into JSON values in String formation for comparison.

POJO Object for below Payload:
workpsace property root and inside / nested name, type, description

Create POJO with getter , setter for these two nodes:

POJO Serialization and Deserialization in Rest Assured:

Deserialization :

If a String property is present extra in the POJO closs, then it will go in the request like below.

Add Non null annotation from Jackson either at Class level or on separate fields/string
members, then the de-serialized JSON in request will not contain id as it is null.
Similar to this we have other properties like Non-null (strings), non-default (integer) , non-
empty (objects) can be explored in Jackson.

Authentication and Authorization:

List of Authentication Schemes in HTTP protocol:

Most common ones are highlighted below.

Basic Authentication Type: Not that much safe and it is used internal services in general.

Way to provide this input in Postman:

Below is the way it is getting passed in the request:

Base 64 Encoding and Decoding in Java Util package :

Digest Authentication Scheme:

Client first sends the request without username and password. Server sends other
parameters such as realm, nonce, algorithm to the client which client uses to encrypt the
username and password. Later encrypted details are put in request to the server. Relatively
safer than basic authentication. MD5 algorithm is a sample and it can be any other from the
allowed list.

Bearer Token Authentication mechanism :

Another Type – API Key :

Used for Internal and good example is sauce lab keys, cloud git hub tokens etc.

OAuth:

Primarily used for authorization but it also does the authentication via OpenID connect and
so it is considered as HTTP authentication mechanism.

Open ID Connect + OAuth:

OpenID is an identity layer on top of the OAuth 2.0 protocol. It allows a user to prove their
identity to a third-party application by using an account they already have with an OpenID
provider. For example, you can use your Google or Facebook account to log in to other
websites that support OpenID.

OpenID extends OAuth 2.0 with additional features, such as:

ID tokens: These are JSON web tokens (JWTs) that contain information about the
user’s identity and authentication status. They are issued by the OpenID provider and
validated by the third-party application.
Standard claims: These are predefined sets of attributes that the user can share with
the third-party application, such as name, email, picture, etc. They are included in the
ID token or returned by the user info endpoint.
Discovery and dynamic registration: These are mechanisms that enable the third-
party application to discover the OpenID provider’s configuration and capabilities,
and to register itself dynamically with the provider.

OAuth and Delegated Authorization:

OAuth is a standard that enables access delegation. It allows a user to grant a third-party
application access to their protected resources on a resource server, without sharing their
credentials. This way, the user can control the level and duration of access that the third-
party application has, and revoke it at any time.

Delegated authorization is a type of OAuth flow that involves the user, the third-party
application, the resource server, and the authorization server. The user authorizes the third-
party application to access their resources on the resource server by obtaining an access
token from the authorization server. The access token is a credential that represents the
user’s consent and specifies the scope and duration of the access. The third-party application
can then use the access token to act on the user’s behalf when accessing the protected
resources.

Example:

Suppose you want to use a web application that allows you to create and share playlists of
your favourite songs. The web application uses Spotify as the resource server, where you
have an account with your music preferences and playlists. The web application is the third-
party application that wants to access your Spotify data.

To use the web application, you need to authorize it to access your Spotify account. This is
where OAuth and delegated authorization come in. The web application will redirect you to
Spotify’s authorization server, where you will be asked to log in with your Spotify credentials
and grant permission to the web application. You can choose the level of access that you
want to give to the web application, such as read-only or read-write, and the duration of the
access, such as one hour or one month.

Once you grant permission, Spotify’s authorization server will issue an access token to the
web application. The access token is a string of characters that represents your consent and
the scope and duration of the access. The web application can then use the access token to
request your Spotify data from the resource server. The resource server will verify the access
token and return the requested data to the web application. The web application can then
display your Spotify data and allow you to create and share playlists.

This is how OAuth and delegated authorization work. They enable you to securely share your
data with third-party applications without giving away your credentials. You can also revoke
the access token at any time if you change your mind or suspect any misuse. OAuth is a
widely used standard that supports many web services and applications.

Another Example with OAuth Flow Diagram :

zoomin is an app (3rd Party App) that creates an album or frame with the photos we provide.
And we can provide photos from Google photos (Resource app that we need to access)
without sharing the credentials. (OAuth)

Sample OAuth URL for Authentication: OpenID connect
dominos 3rd party application accessing the Google Account resource

Sample OAuth URL for Authorization:
zoomin 3rd party application accessing the Google photos resource

1. OAuth Terminologies:

OAuth – Authorization Grant Flow : A widely used flow for OAuth mechanisms

2. User Authorization: The user initiates the process by requesting access

to their Google Photos via the Zoomin application. This is typically

done through an interface in the Zoomin application that asks the user

to log in to their Google account and authorize Zoomin to access their

Google Photos.

3. Authorization Request: Zoomin redirects the user to Google’s

authorization server, where they can log in and grant permission for

Zoomin to access their photos. This is done by presenting the user with

a consent screen where they can see what kind of access Zoomin is

requesting (in this case, access to Google Photos) and decide whether

to grant it.

4. Authorization Grant: Upon approval, an authorization code is

generated and sent back to Zoomin. This authorization code is a

temporary credential that represents the user’s consent for Zoomin to

access their Google Photos. It is important to note that the

authorization code is short-lived and can only be used once.

5. Exchange Auth Code for Tokens: Zoomin exchanges this

authorization code for an access token and a refresh token from

Google’s authorization server. The access token is a string representing

the authorization granted to the client (Zoomin). This token provides

the client with secure access to the user’s Google Photos resources via

the Google Photos API. The access token is used in every API request

and it has a limited lifetime, typically around one hour. Once the access

token expires, it can no longer be used to access the user’s resources.

The refresh token is also a string, but its purpose is to obtain a new

access token when the current access token expires. Unlike access

tokens, refresh tokens are usually long-lived. When the access token

expires, the client can send a request to the authorization server,

including the refresh token, to get a new access token. This process is

done without any interaction from the user, providing a seamless

experience.

6. Access Granted: With the access token, Zoomin can now retrieve

resources (photos) from Google Photos API on behalf of the user. The

access token is included in the header of each API request, allowing

Zoomin to access the user’s photos without needing to know their

Google credentials.

7. Resource Delivery: The requested photos are delivered to the user

through the Zoomin application. This is done by Zoomin making a

request to the Google Photos API with the access token, retrieving the

photos, and then displaying them in the Zoomin application.

This flow ensures that the user’s credentials are not shared with the third-party

application (Zoomin), enhancing the security of the user’s data. The access token

allows Zoomin to access the user’s Google Photos resources without needing the

user’s Google credentials. The refresh token allows Zoomin to obtain a new access

token once the current one expires, ensuring a seamless user experience. This is a

common practice in many web and mobile applications to securely access user data

from other platforms.

OAuth Implicit Grant Flow:

1. User Authentication: The user initiates the process by requesting access to their

Google Photos via the Zoomin application. This is typically done through an interface

in the Zoomin application that asks the user to log in to their Google account and

authorize Zoomin to access their Google Photos.

2. Authorization Request: Zoomin redirects the user to Google’s authorization server,

where they are prompted to grant or deny permission for Zoomin to access their

photos. This is done by presenting the user with a consent screen where they can see

what kind of access Zoomin is requesting (in this case, access to Google Photos) and

decide whether to grant it.

3. Access Token Retrieval: If permission is granted, an access token is immediately

issued by Google’s authorization server. The user is then redirected back to Zoomin

with this token included in the URL fragment. Unlike the Authorization Code Grant

flow, there is no need to exchange an authorization code for an access token in the

Implicit Grant flow. This makes the process faster, but also less secure as the access

token can potentially be exposed in the browser history or logs.

4. Access Token Extraction: Zoomin extracts the access token from the URL fragment.

This is done using JavaScript running in the user’s browser. Once the token is

extracted, it is typically stored in the application’s session for use in subsequent API

requests.

5. Resource Access: With this token, Zoomin can now directly request and retrieve

specific resources (like photos) from Google Photos API on behalf of the user. The

access token is included in the header of each API request, allowing Zoomin to

access the user’s photos without needing to know their Google credentials.

This flow is typically used for JavaScript-based applications running in the browser

where the access token is immediately needed and the refresh token is not used. It’s

worth noting that due to its inherent security risks, the Implicit Grant flow is no

longer recommended for most applications

OAuth Client Credentials Flow:

1. Client Authentication: The client application (Service2) sends its Client ID and Client

Secret to the Authorization Server. These credentials are used to authenticate the

client application. The Client ID is a public identifier for the application, while the

Client Secret is a confidential key used to secure the application’s communication

with the Authorization Server.

2. Access Token Issuance: The Authorization Server validates the Client ID and Client

Secret. If these credentials are valid, the Authorization Server issues an Access Token

to the client application (Service2). This Access Token is a string representing the

authorization granted to the client.

3. Access Token Usage: The client application (Service2) uses this Access Token to

request the protected resource from the Resource Server (Service1). The Access

Token is included in the header of each API request.

4. Resource Access: The Resource Server (Service1) validates the Access Token. If the

token is valid, the Resource Server allows access to the requested resource and

returns it to the client application (Service2).

This flow is typically used when the client application needs to access resources from

a Resource Server on its own behalf, rather than on behalf of a user. It’s a simpler

flow compared to others in OAuth, as it doesn’t involve any user interaction or

redirections. However, it should only be used when the client application can

securely store the Client Secret. If the Client Secret is compromised, anyone can

impersonate the client application and gain access to the protected resources.

Important Links :

Using OAuth 2.0 to Access Google APIs | Authorization | Google for Developers

API Playground : OAuth 2.0 Playground (google.com)

JWT tokens. Start from here: JSON Web Tokens (auth0.com)

https://developers.google.com/identity/protocols/oauth2
https://developers.google.com/oauthplayground/
https://auth0.com/docs/secure/tokens/json-web-tokens

OAuth 2.0 and OpenID Connect Authentication Flow The usual OAuth 2.0

authorization code flow looks like this:

1. The client requests authorization from the resource owner (usually the user).

2. If the owner gives authorization, the client passes the authorization grant to

the authorization server.

3. If the grant is valid, the authorization server returns an access token, possibly

alongside a refresh and/or ID token.

4. The client now uses that access token to access the resource server.

OpenID Connect (OIDC) OpenID Connect is an identity layer on top of the OAuth 2.0

protocol. It extends OAuth 2.0 with user authentication and Single Sign-On (SSO)

functionality. It enables you to retrieve and store authentication information about your

end users.

ID Token The ID token is an artifact that proves that the user has been authenticated3. It

contains claims that carry information about the user. They can be sent alongside or

instead of an access token. Information in ID tokens enables the client to verify that a

user is who they claim to be.

JWT (JSON Web Token) – ID Token Way: JWT is an open standard that defines a

compact and self-contained way for securely transmitting information between parties

as a JSON object. This information can be verified and trusted because it is digitally

signed. JWTs can be signed using a secret (with the HMAC algorithm) or a public/private

key pair using RSA or ECDSA.

JWT Structure A typical JWT consists of three parts separated by dots (.):

Header: The header typically consists of two parts: the type of the token, which is JWT,

and the signing algorithm being used, such as HMAC SHA256 or RSA. For example:

JSON

{

 "alg": "HS256",

 "typ": "JWT"

}

Payload: The payload contains the claims. Claims are statements about an entity

(typically, the user) and additional data. There are three types of claims: registered,

public, and private claims. For example:

JSON

{

 "userId":"b07f85be-45da",

 "iss": "https://provider.domain.com/",

 "sub": "auth/some-hash-here",

 "exp": 153452683

}

Signature (CERT): The signature is used to verify that the sender of the JWT is who it

says it is and to ensure that the message wasn’t changed along the way.

Session-Based Authentication:

 Session-based authentication is a mechanism where the user state is maintained on the

server side. When a user logs in, using their username and password, via a POST request

to the “/signin” endpoint, the server validates these credentials. Upon successful

validation, it generates a unique session ID for that particular user session.

This session ID is then sent back to the client’s browser and stored as a cookie. Every

subsequent request from the client to access restricted resources includes this cookie

(session ID). The server uses this ID to retrieve the user’s session information stored on

its end.

In contrast with token-based authentication where tokens are used for validating and

maintaining user states across multiple services or domains, session IDs in session-based

authentication are specific to one domain and one server. This ensures an additional

layer of security as these cannot be used interchangeably across different domains or

services.

Here’s how it works step by step as depicted in the image:

1. The browser sends a POST request containing username and password to “/signin”
endpoint.

2. Server validates credentials; if valid, creates a unique Session ID.
3. Server sends back Session ID which gets stored as a cookie in browser.
4. For subsequent requests for resources, browser sends Cookie containing Session ID.
5. Server retrieves Session info using Session ID; if valid, sends requested resource

back.

In summary, session-based authentication involves the server maintaining user

sessions and storing session information. This is different from token-based

authentication, such as JWT, which relies on the validity of tokens for user

authentication. The choice between these approaches often depends on the web

application’s requirements and whether it aims to maintain user state. Some websites

may even opt for a combination of both authentication methods based on their

specific needs.

Form-Based Authentication and CSRF Token :

Definition:

User authentication through an editable HTML form.
Users fill in and submit the form with a username and password.
Commonly used for web applications that maintain user state or sessions.

Rest Assured Support for Form-Based Authentication :

 Rest Assured supports form-based authentication using the auth.form
method. A simple HTML form is presented to the user for login, typically with
username and password fields.

URL : Usage · rest-assured/rest-assured Wiki · GitHub

Sample HTML :

https://github.com/rest-assured/rest-assured/wiki/Usage#form-authentication

Rest Assured :

CSRF Token and Its Importance

CSRF (Cross-Site Request Forgery) Token:
A security measure to prevent unauthorized actions initiated by an attacker on
behalf of an authenticated user. The server may send a CSRF token along with
the session ID to enhance security. CSRF token is a randomly generated string
that is unpredictable and challenging to hack.

Rest Assured Support for CSRF Token

Rest Assured has built-in support for CSRF token handling. It has multiple ways
to achieve it according to needs.

Considerations for Automated Testing

Understand the structure of the HTML form and identify the fields needed for
authentication. Ensure proper configuration for CSRF token handling based on
the application's requirements.

Sample HTML Form from the Demo App: RomanianCoderExamples/SpringBootSecurity at

master · dangeabunea/RomanianCoderExamples · GitHub

Rest Assured Form authentication for the above HTML form:

HTTP validation as rest assured by default looking for HTTPS. Field csrf token is
passed to have the token and extracting JSESSIONID and giving for next
request. Finally HTML content is show which can also be validated.

https://github.com/dangeabunea/RomanianCoderExamples/tree/master/SpringBootSecurity
https://github.com/dangeabunea/RomanianCoderExamples/tree/master/SpringBootSecurity

HTTP Cookies in Rest Assured:

Understanding HTTP Cookies

Definition: Small pieces of data stored in browser storage. Key – Value pairs
in general. Also known as browser cookies or internet cookies. Designed to
authenticate users and maintain user sessions.

Purpose of Cookies in Web Applications

 Authenticate users: Verify if a user is logged in.
 Session management: Maintain user sessions and states.
 Personalization: Store user preferences, shopping cart items, etc.
 Tracking: Record browsing activity, pages visited, buttons clicked, etc.

Types of Cookies
 Session Cookie:

 Active as long as the user is on the browser.
 Expires when the user closes the browser or signs out.

 Persistent Cookie:
 Persists even if the browser is closed or the user signs out.
 Typically has an expiry time.

 Secure Cookie:
 Works only on HTTPS protocol.
 Cannot be transmitted on HTTP for enhanced security.

 HttpOnly Cookie:
 Cannot be read by JavaScript running on the client side.
 Adds security by preventing JavaScript access.

 SameSite Cookie:
 Restricts cookies to a single domain.
 A cookie set for one domain cannot be used for another.

Cookie Setup Process

1. Client makes the first request to the server.
2. Server creates a cookie and sends it as part of the response header (Set-

Cookie).
3. Client stores the cookie in the browser storage.
4. Subsequent API calls include the cookie as part of the request header

(Cookie).

Example:

 Cookies can be inspected using browser developer tools.
 Cookies are visible under the "Application" tab in Chrome DevTools.
 Different cookies have varying attributes such as session, expiration,

secure, and HttpOnly.

Rest Assured Code:

Sending Cookies Using Cookie Builder from Rest Assured:

Output:

Multiple Cookies Passing:

Fetch Single Cookie:

Fetch Multiple Cookies:

MISC:

Certs and Rest Assured :
https://www.youtube.com/playlist?list=PLIWM60RqoEduEKvBntAArbI43mDPQ
WhWd

https://www.youtube.com/playlist?list=PLIWM60RqoEduEKvBntAArbI43mDPQWhWd
https://www.youtube.com/playlist?list=PLIWM60RqoEduEKvBntAArbI43mDPQWhWd

Framework Design

 Scalable and extensible for adding new APIs.
 Reusable methods for request and response specifications.
 Reusable methods for API requests to reduce code.
 Separation of API layer from the test layer for clarity.
 Use of POJOs for serialization and deserialization.
 Implementation of Singleton design pattern for configuration.
 Integration of Lombok for boilerplate code reduction.
 Implementation of the builder pattern for POJOs.
 Integration of Extent Reports for reporting and logging.
 Automation of positive and negative scenarios.
 Support for parallel execution.
 Implementation of data-driven test cases using test data providers.
 Token management: check expiry, renew if needed.
 Integration with Maven Surefire plugin for command-line execution.
 Integration with GitHub and Jenkins for end-to-end execution.

Tools and Technologies:

 Rest Assured for automation library testing.
 Java as the programming language.
 Reports for reporting.
 Hamcrest for assertions.
 Jackson API for Serialization and Deserialization.
 Lombok for reducing boilerplate code.

Goal for Automation:

Structure:

Sample API URLs: API calls | Spotify for Developers

Authorization : Authorization Code Flow | Spotify for Developers

List of API’s : Web API Reference | Spotify for Developers

Steps to Spotify Register:

Step 1 : Sign Up https://www.spotify.com/
Step 2: Log in Home | Spotify for Developers and go to spotify-for-developers for creating an
APP. Also, verify your registered email here.
Step 3: Make a note of Client ID and Client Secret from (Dashboard -> ApiTestSpotify ->
Settings -> Basic -> Information)

Base URI for API : https://api.spotify.com/v1

Authorization Endpoint: https://accounts.spotify.com/authorize

Scope choosen from the guide (Scopes | Spotify for Developers) is:
playlist-read-private playlist-read-collaborative playlist-modify-private playlist-modify-public

https://developer.spotify.com/documentation/web-api/concepts/api-calls
https://developer.spotify.com/documentation/web-api/tutorials/code-flow
https://developer.spotify.com/documentation/web-api/reference/get-an-album
https://www.spotify.com/
https://developer.spotify.com/
https://developer.spotify.com/dashboard
https://api.spotify.com/v1
https://accounts.spotify.com/authorize
https://developer.spotify.com/documentation/web-api/concepts/scopes

Generating the Authorization Code:

 Frame the request in Postman and hit it in browser for getting the code. Response can
be seen in the URL.

Agree the concern

URL will have the code which is nothing authorization code and make a note of
it. Authorization code is short lived and will expire quickly in general.

Create Access & Refresh Token via POST request :

Access Token Regeneration:

 We can regenerate the access token if expired with the help of refresh token
available with us. Even if refresh token has expired, then we have follow from the start of
authorization code.

A refresh token is a security credential that allows client applications to obtain new access
tokens without requiring users to reauthorize the application.

Access tokens are intentionally configured to have a limited lifespan (1 hour), at the end of
which, new tokens can be obtained by providing the original refresh token acquired during
the authorization token request response:

Request Header:

https://developer.spotify.com/documentation/web-api/concepts/access-token

Request Body:
 Response is received with the newly generated access token.

Get User ID for access Playlist API as user id is in Path Parameter variable and
differs.

Spotify provides web console here to try APIs and get the responses.

Create a PlayList:

 Request Header:

Request Body:

New Playlist in the Spotify APP Created :

